basicDIM Wireless LED-Treiber

TRIDONIC

Driver LC 38W 350-1050mA bDW TW SR PRE2

Baureihe premium Tunable White

Produktbeschreibung

- Unabhängiger dimmbarer Zweikanal Konstantstrom-LED-Treiber
- Baut automatisch ein drahtloses Kommunikationsnetzwerk auf mit bis zu 127 Nodes
- Dimmbereich 1 ... 100 %
- Geeignet für Leuchten der Schutzklasse I und Schutzklasse II
- Ausgangsstrom einstellbar zwischen 350 1.050 mA mit I-SELECT 2 Plugs
- Max. Ausgangsleistung 38 W
- Bis zu 87 % Effizienz
- Leistungsaufnahme im Stand-by < 0,37 W
- Nominale Lebensdauer bis zu 100.000 h

Gehäuse-Eigenschaften

- Gehäuse: Polycarbonat, schwarz
- Schutzart IP20
- Zugentlastung mit der Möglichkeit der Durchgangsverdrahtung

Schnittstellen

- basicDIM Wireless
- Klemmen: 45° / 0° Steckklemmen

Funktionen

- Einstellbarer Ausgangsstrom (I-SELECT 2)
- Constant Light Output Funktion (CLO)
- Power-up Fading und Fade-to Zero
- Schutzfunktionen (Übertemperatur, Kurzschluss, Überlast, Leerlauf, reduzierte Stofsstromverstärkung)
- Geeignet für Notlichtbeleuchtungsanlagen gemäß EN50172

Vorteile

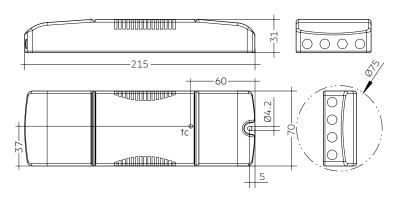
- Anwendungsorientiertes Betriebsfenster für max. Kompatibilität
- Hohe Energieeinsparungen durch geringe Stand-by-Verluste

Typische Anwendung

- Für Spotlight und Downlight bei Handels- und Gastronomie-Anwendungen
- Tunable-White Anwendungen

Normen, Seite 5

basicDIM Wireless LED-Treiber


IP20 SELV ® ♥ ELIHI C € & RoHS

Driver LC 38W 350-1050mA bDW TW SR PRE2

Baureihe premium Tunable White

Technische Daten

recillistic Dateil	
Netzspannungsbereich	220 – 240 V
Wechselspannungsbereich	198 – 264 V
Gleichspannungsbereich	176 – 288 V
Netzfrequenz	0 / 50 / 60 Hz
Überspannungsfestigkeit	320 V AC, 48 h
Typ. Nennstrom (bei 230 V, 50 Hz, Volllast) [®] [®]	96 – 192 mA
Typ. Nennstrom (220 V, 0 Hz, Volllast, 15 % Dimmlevel) [©] 35 mA
Ableitstrom (bei 230 V, 50 Hz, Volllast) ^① ②	< 500 μΑ
Typ. Wirkungsgrad (bei 230 V / 50 Hz / Volllast) [®]	87 %
λ (bei 230 V, 50 Hz, Volllast)®	> 0,96
Typ. Leistungsaufnahme im Stand-by	< 0,37 W
Typ. Eingangsstrom im Leerlauf	22 mA
Typ. Eingangsleistung im Leerlauf	0,5 W
Einschaltstrom (Spitze / Dauer)	26,4 A / 224 µs
THD (bei 230 V, 50 Hz, Volllast) [®]	< 10 %
Startzeit (bei 230 V, 50 Hz, Volllast) [®]	< 0,6 s
Startzeit (DC-Betrieb)	< 0,4 s
Umschaltzeit (AC/DC)®	< 0,2 s
Abschaltzeit (bei 230 V, 50 Hz, Volllast)	< 20 ms
Ausgangsstromtoleranz ^① ^⑤	± 3 %
Max. Ausgangsstromspitze (nicht wiederkehrend)	≤ Ausgangsstrom + 20 %
Ausgangsstrom NF Restwelligkeit (< 120 Hz)	± 2 %
Max. Ausgangsspannung (Leerlaufspannung)	60 V
Dimmbereich	1 – 100 %
Farbtemperaturbereich	2.700 – 6.500 K
Stoßspannungsfestigkeit (zwischen L – N)	1 kV
Stoßspannungsfestigkeit (zwischen L/N – PE)	2 kV
Stofspannung ausgangsseitig (gegen PE)	< 500 V
Schutzart	IP20
Lebensdauer	bis zu 100.000 h
Abmessungen LxBxH	215 x 70 x 31 mm

Bestelldaten

Тур	Artikelnummer	Verpackung Karton	Verpackung Palette	Gewicht pro Stk.
LC 38/350-1050/50 bDW TW SR PRE2	28002584	10 Stk.	400 Stk.	0,235 kg

Spezifische technische Daten

Тур	Ausgangs- strom [®]	Min. Vorwärts- spannung	Max. Vorwärts- spannung	Max. Ausgangs- leistung	Typ. Leistungsaufnahme (bei 230 V, 50 Hz, Volllast)	Typ. Stromaufnahme (bei 230 V, 50 Hz, Volllast)		e- Umgebungs- c temperatur ta	I-SELECT 2 Widerstands- wert [®]
	350 mA	20 V	50,0 V	17,5 W	21,1 W	96 mA	75 ℃	-25 +60 °C	Offen
	400 mA	20 V	50,0 V	20,0 W	23,7 W	107 mA	75 °C	-25 +55 °C	12,50 kΩ
	450 mA	20 V	50,0 V	22,5 W	26,4 W	119 mA	75 °C	-25 +55 °C	11,11 kΩ
	500 mA	20 V	50,0 V	25,0 W	29,1 W	130 mA	75 °C	-25 +55 °C	10,00 kΩ
	550 mA	20 V	50,0 V	27,5 W	31,7 W	141 mA	75 °C	-25 +55 °C	9,09 kΩ
	600 mA	20 V	50,0 V	30,0 W	34,4 W	152 mA	75 °C	-25 +55 °C	8,33 kΩ
	650 mA	20 V	50,0 V	32,5 W	37,0 W	164 mA	75 °C	-25 +55 °C	7,69 kΩ
LC 38/350-1050/50 bDW TW SR PRE2	700 mA	20 V	50,0 V	35,0 W	39,9 W	176 mA	75 °C	-25 +55 °C	7,14 kΩ
FRL2	750 mA	20 V	50,0 V	37,5 W	42,5 W	187 mA	75 °C	-25 +50 °C	6,67 kΩ
	800 mA	20 V	47,5 V	38,0 W	42,9 W	189 mA	75 °C	-25 +50 °C	6,25 kΩ
	850 mA	20 V	44,7 V	38,0 W	43,1 W	190 mA	75 °C	-25 +50 °C	5,88 kΩ
	900 mA	20 V	42,2 V	38,0 W	43,3 W	191 mA	75 °C	-25 +50 °C	5,56 kΩ
	950 mA	20 V	40,0 V	38,0 W	43,4 W	191 mA	75 °C	-25 +50 °C	5,26 kΩ
	1.000 mA	20 V	38,0 V	38,0 W	43,4 W	191 mA	75 °C	-25 +50 °C	5,00 kΩ
	1.050 mA	20 V	36,2 V	38,0 W	43,6 W	192 mA	75 °C	-25 +50 °C	Kurzschluss (0 Ω)

^① Gültig bei 100 % Dimmlevel.

² Abhängig vom eingestellten Ausgangsstrom.

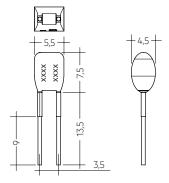
[®] Die Tabelle enthält eine Auswahl an Betriebspunkten, deckt aber nicht jeden Betriebspunkt ab. Der Ausgangsstrom kann innerhalb des Strombereiches in 1-mA-Schritten eingestellt werden.

 $^{^{\}scriptsize \textcircled{4}}$ Nicht kompatibel mit I-SELECT (Generation 1). Kalkulierter Widerstandswert.

[®] Ausgangsstrom ist Mittelwert.

[®] Gültig bei sofortiger Änderung der Stromversorgungsart, ansonsten gilt die Startzeit.

I-SELECT 2 PLUG PRE / EXC


Produktbeschreibung

- Vorgefertigter Widerstand für Stromeinstellung
- Kompatibel mit LED-Treiber mit I-SELECT 2 Interface; nicht kompatibel mit I-SELECT (Generation 1)
- Widerstand ist basisisoliert
- Widerstandsleistung 0,25 W
- Stromtoleranz ± 2 % zusätzlich zur Ausgangsstromtoleranz
- Kompatibel mit LED-Treiber der Serien PRE und EXC

Berechnungsbeispiel

- $R[k\Omega] = 5 V / I_out[mA] \times 1000$
- Verwendung von E96 Widerständen
- Widerstandstoleranz ≤ 1 %; Leistung ≥ 0,1 W; Basisisolierung erforderlich
- Wird ein Widerstandswert außerhalb des spezifizierten Bereiches verwendet, so wird automatisch der Minimal-Strom (bei zu großem Widerstandswert) bzw. der Maximum-Strom (bei zu kleinem Widerstandwert) eingestellt

Bestelldaten

Тур	Artikel- nummer	Farbe	Kenn- zeichnung	Strom	Widerstand	s-Verpackun Sack	g Gewicht pro Stk.
I-SELECT 2 PLUG 350MA BL	28001110	Blau	0350 mA	350 mA	14,30 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 375MA BL	28001111	Blau	0375 mA	375 mA	13,30 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 400MA BL	28001112	Blau	0400 mA	400 mA	12,40 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 425MA BL	28001251	Blau	0425 mA	425 mA	11,80 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 450MA BL	28001113	Blau	0450 mA	450 mA	11,00 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 475MA BL	28001252	Blau	0475 mA	475 mA	10,50 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 500MA BL	28001114	Blau	0500 mA	500 mA	10,00 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 525MA BL	28001960	Blau	0525 mA	525 mA	9,53 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 550MA BL	28001115	Blau	0550 mA	550 mA	9,09 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 600MA BL	28001116	Blau	0600 mA	600 mA	8,25 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 650MA BL	28001117	Blau	0650 mA	650 mA	7,68 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 700MA BL	28001118	Blau	0700 mA	700 mA	7,15 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 750MA BL	28001119	Blau	0750 mA	750 mA	6,65 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 800MA BL	28001120	Blau	0800 mA	800 mA	6,19 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 850MA BL	28001121	Blau	0850 mA	850 mA	5,90 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 900MA BL	28001122	Blau	0900 mA	900 mA	5,62 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 950MA BL	28001123	Blau	0950 mA	950 mA	5,23 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 1000MA BL	28001124	Blau	1000 mA	1000 mA	4,99 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG 1050MA BL	28001125	Blau	1050 mA	1050 mA	4,75 kΩ	10 Stk.	0,001 kg
I-SELECT 2 PLUG MAX BL	28001099	Blau	MAX	MAX	0,00 kΩ	10 Stk.	0,001 kg

1. Normen

EN 55015

EN 61000-3-2

EN 61000-3-3

EN 61347-1

EN 61347-2-13

EN 62384

EN 61547

EN 300330 V2.11

EN 301489-1 V2.1.1

EN 301489-3 V2.1.1

EN 300328 V2.1.1

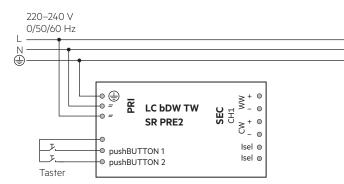
EN 301489-17 V2.1.1

Gemäß EN 50172 für Zentralbatterieanlagen geeignet Gemäß EN 60598-2-22 für Notlichtinstallation geeignet

2. Thermische Angaben und Lebensdauer

2.1 Erwartete Lebensdauer

Erwartete Lebensdauer

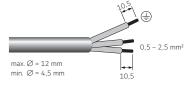

Тур	Ausgangsstrom	ta	30 °C	35 °C	40 °C	45 °C	50 °C	55 ℃	60 °C
	750 4	tc	50 °C	53 °C	58 °C	60 ℃	65 °C	70 °C	75 °C
	350 mA	Lebensdauer	> 100.000 h	90.000 h	65.000 h				
LC 38/350-1050/50 bDW TW SR PRE2	350 – 700 mA	tc	55 °C	58 ℃	60 ℃	65 °C	70 °C	75 °C	-
		Lebensdauer	> 100.000 h	> 100.000 h	> 100.000 h	> 100.000 h	80.000 h	55.000 h	-
	700 4050 4	tc	60 ℃	63 °C	65 ℃	70 °C	75 °C	-	-
	700 – 1.050 mA	Lebensdauer	> 100.000 h	> 100.000 h	> 100.000 h	80.000 h	55.000 h	-	-

Der LED-Treiber ist für die oben angegebene Lebensdauer ausgelegt, unter Nennbedingungen mit einer Ausfallwahrscheinlichkeit von kleiner 10 %.

Die Abhängigkeit des Punktes tc von der Temperatur ta hängt auch vom Design der Leuchte ab. Liegt die gemessene Temperatur tc etwa 5 K unter tc max., sollte die Temperatur ta geprüft und schließlich die kritischen Bauteile (z.B. ELCAP) gemessen werden. Detaillierte Informationen auf Anfrage.

3. Installation / Verdrahtung

3.1 Anschlussdiagramm

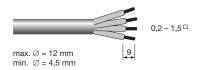

Der verwendete Taster muss über eine Isolation verfügen.

3.2 Leitungsart und Leitungsquerschnitt

Netzleitungen

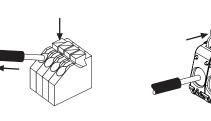
Zur Verdrahtung können Litzen- oder Volldraht von 0,5 bis 2,5 mm² verwendet werden. Für perfekte Funktion der Steckklemmen Leitungen 10–11 mm abisolieren.

Nur einen Draht pro Anschlussklemme verwenden. Nur ein Kabel pro Zugentlastungskanal verwenden.

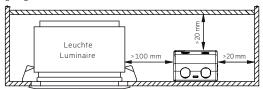


Sekundärleitungen (LED-Modul)

Zur Verdrahtung können Litzendraht mit Aderendhülsen oder Volldraht mit Leitungsquerschnitt von 0,2 bis 1,5 mm² verwendet werden. Für perfekte Funktion der Steckklemme Leitungen 8,5–9,5 mm abisolieren.


Nur einen Draht pro Anschlussklemme verwenden.

Nur ein Kabel pro Zugentlastungskanal verwenden.


3.3 Lösen der Klemmverdrahtung

Dazu den "Drücker" an der Klemme betätigen und den Draht nach vorne abziehen.

3.4 Einbaubedingungen bei Verwendung als unabhängiger Treiber mit Clip-On

Trocken; Säurefrei; Ölfrei; Fettfrei. Die am Gerät angegebene maximale Umgebungstemperatur (ta) darf nicht überschritten werden. Die unten angegebenen Mindestabstände sind Empfehlungen und von der eingesetzten Leuchte abhängig. Gerät ist für die Montage direkt in der Ecke nicht geeignet.

3.5 Verdrahtungsrichtlinien

- Die sekundären Leitungen sollten für ein gutes EMV-Verhalten getrennt von den Netzanschlüssen und -leitungen geführt werden.
- Für ein gutes EMV-Verhalten sollte die LED-Verdrahtung so kurz wie möglich gehalten werden. Die max. sekundäre Leitungslänge beträgt 2 m (4 m Schleife).
- Die sekundären Leitungen (LED Modul) sollten für ein gutes EMV-Verhalten parallel geführt werden.
- · Sekundäres Schalten ist nicht zulässig.
- Der LED-Treiber besitzt keinen sekundärseitigen Verpolschutz. LED-Module, welche keinen Verpolschutz aufweisen, können bei Verpolung zerstört werden.
- Falsche Verdrahtung des LED-Treibers kann zu irreparablen Schäden führen und eine richtige Funktion ist nicht mehr gegeben.
- Die Durchgangsverdrahtung ist ausschließlich für den Anschluss weiterer LED-Treiber.
 - Max. Dauerstrom von 16 A darf nicht überschritten werden.
- Um Geräteausfälle durch Masseschlüsse zu vermeiden, muss die Verdrahtung vor mechanischer Belastung mit scharfkantigen Metallteilen (z.B. Leitungsdurchführung, Leitungshalter, Metallraster, etc.) geschützt werden

3.6 Anschließen des LED-Moduls im Betrieb

Anschließen des LED-Moduls während des Betriebs ist nicht zulässig, da eine Ausgangsspannung > 0 V anliegen kann.

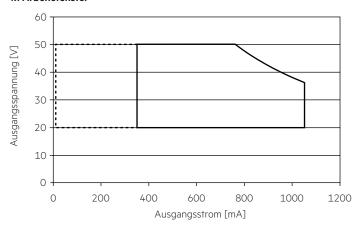
Wird eine LED-Last angeschlossen, muss das Gerät zuerst neu gestartet werden, bevor der LED-Ausgang aktiviert wird. Dies kann durch Netzreset oder über das Interface (basicDIM Wireless) erfolgen.

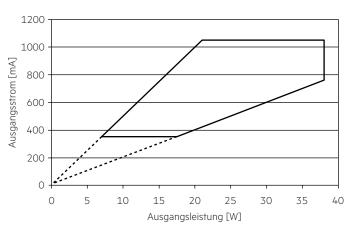
3.7 Erdanschluss

Der Erdanschluss ist als Schutzerde ausgeführt.
Der LED-Treiber kann mittels Erdklemme geerdet werden.
Wird der LED-Treiber geerdet, muss dies mit Schutzerde (PE) erfolgen.
Für die Funktion des LED-Treibers ist keine Erdung notwendig.
Zur Verbesserung von folgenden Verhalten wird ein Erdanschluss empfohlen:

- Funkstörung
- LED Restglimmen im Stand-by
- Übertragung von Netztransienten an den LED Ausgang

Generell ist es empfehlenswert bei Modulen, die auf geerdeten Leuchtenteilen bzw. Kühlkörpern montiert sind und dadurch eine hohe Kapazität gegenüber Erde darstellen, auch den LED-Treiber zu erden.

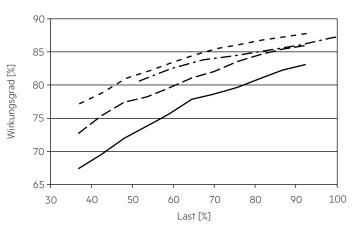

3.8 I-Select 2 Widerstände verbinden mittels Kabel

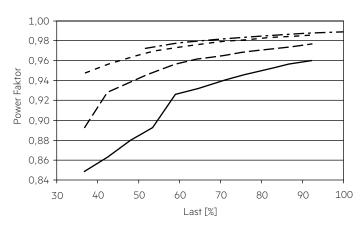

Für Details siehe:

http://www.tridonic.com/com/de/download/technical/LCA_PRE_LC_EXC_Produkthandbuch_de.pdf.

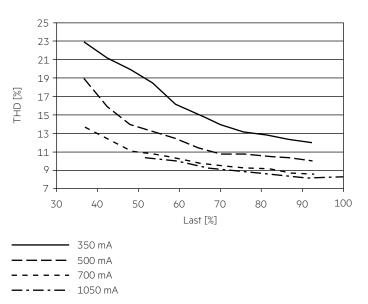
4. Elektr. Eigenschaften

4.1 Arbeitsfenster




Arbeitsfenster 100 %
----- Arbeitsfenster gedimmt

Es ist sicherzustellen, dass der LED-Treiber ausschließlich innerhalb des gezeigten Arbeitsfensters betrieben wird. Besondere Aufmerksamkeit ist dem gedimmten Betrieb sowie dem DC- und Notlichtbetrieb zu widmen, da aufgrund der verwendeten Amplituden-Dimmung die Modulspannung mit dem Dimm-Level variiert. Eine Unterschreitung der spezifizierten minimalen Ausgangsspannung des LED-Treibers kann zur Abschaltung führen. Siehe Abschnitt "6.9 Lichtlevel im DC-Betrieb" für mehr Informationen.


4.2 Verhältnis Effizienz zu Last

4.3 Verhältnis Power Faktor zu Last

4.4 Verhältnis THD zu Last

 $100\ \%$ Last entsprechen der max. Ausgangsleistung (Volllast) gemäß der Tabelle auf Seite 2.

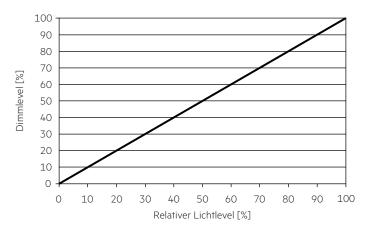
4.5 Maximale Belastung von Leitungsschutzautomaten

Sicherungsautomat	C10	C13	C16	C20	B10	B13	B16	B20	Einschaltstrom	
Installation Ø	1,5 mm ²	1,5 mm ²	2,5 mm ²	4 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	4 mm ²	l _{max}	Pulsdauer
LC 38/350-1050/50 bDW TW SR PRE2	16	21	26	33	10	13	16	20	26 A	224 µs

Kalkulation verwendet typische Werte der Leitungsschutzautomaten-Serie ABB S200 als Referenz.

Tatsächliche Werte können je nach verwendeten Leitungsschutzautomatentypen und der Installationsumgebung abweichen.

4.6 Oberwellengehalt des Netzstromes (bei 230 V / 50 Hz und Volllast) in %


	THD	3.	5.	7.	9.	11.
LC 38/350-1050/50 bDW TW SR PRE2	< 10	< 10	< 3	< 3	< 2	< 2

4.7 Dimmbetrieb

Dimmbereich 1% bis 100 % Digitale Ansteuerung mittels:

basicDIM Wireless

4.8 Dimmcharakteristik

5. Schnittstellen / Kommunikation

5.1 Steuereingang

An den Klemmen kann ein handelsüblicher Taster zur Ansteuerung angeschlossen werden.

Maximale Kabellänge des Tasters ist 1 Meter.

Um diese Funktion zu verwenden, muss sie vorher aktiviert werden.

Das Steuersignal ist keine SELV-Spannung. Die Installation der Steuerleitung ist entsprechend den Richtlinien für Niederspannung auszuführen. Die möglichen Funktionen sind vom jeweiligen Steuermodul abhängig. Profiländerung siehe Handbuch https://www.tridonic.com/com/en/download/technical/Documentation_Tridonic_4remote_BT_EN.pdf

6. Funktionen

6.1 Funktion: Einstellbarer Strom

Der Ausgangsstrom des LED-Treibers kann in einem vorgegebenen Bereich eingestellt werden. Zur Einstellung stehen zwei Optionen zur Verfügung.

Option 1: I-SELECT 2

Die Stromeinstellung erfolgt über einen passenden I-SELECT 2 Widerstand, welcher in die I-SELECT 2 Klemmen eingesteckt wird.

Die mathematische Beziehung zwischen Ausgangsstrom und Widerstandswert wird in der Produktbeschreibung "Zubehör I-SELECT 2 PLUG" erläutert.

Bitte beachten Sie, dass die Widerstandswerte für I-SELECT 2 nicht mit I-SELECT 1 kompatibel sind. Aus der Installation eines falschen Widerstands können möglicherweise irreparable Schäden an den LED-Modulen entstehen.

Widerstände für die wichtigsten Ausgangsstromwerte können von Tridonic bezogen werden (siehe Zubehör).

Option 2: ready2mains

Die Konfiguration erfolgt mittels optionalem Programmer und der entsprechenden Konfigurationssoftware über die ready2mains Schnittstelle.

I-SELECT 2 wird bei der Stromeinstellung vorrangig behandelt, gefolgt von ready2 mains.

6.2 Verhalten bei Kurzschluss

Bei Kurzschluss am LED-Ausgang wird dieser abgeschaltet. Erst nach einem Neustart des Geräts wird der LED-Ausgang wieder aktiviert. Der Neustart kann entweder über Netzreset oder über die Applikation oder Taster erfolgen.

6.3 Verhalten bei Leerlauf

Der LED-Treiber nimmt im Leerlauf keinen Schaden. Der LED-Ausgang wird deaktiviert und ist somit spannungsfrei. Wird eine LED-Last angeschlossen, muss das Gerät zuerst neu gestartet werden, bevor der LED-Ausgang aktiviert wird.

6.4 Überlastschutz

Der LED-Treiber schaltet bei Überschreitung des Ausgangsspannungsbereiches den LED-Ausgang ab. Erst nach einem Neustart des Geräts wird der LED-Ausgang wieder aktiviert. Der Neustart kann entweder über Netzreset oder über die Applikation oder Taster erfolgen.

6.5 Übertemperaturschutz

Um den LED-Treiber vor kurzzeitiger thermischer Überlastung zu schützen, wird bei Überschreitung der Grenztemperatur der Ausgangsstrom der LED reduziert. Der Temperaturschutz wird über tc max. aktiviert. Die Aktivierungstemperatur variiert in Abhängigkeit von der LED-Last. Im DC-Betrieb ist diese Funktion deaktiviert, um die Notlichtanforderung zu erfüllen.

6.6 Konstantlicht

CLO - Constant Light Output Funktion

Der Lichtstrom einer LED nimmt über ihre Lebensdauer kontinuierlich ab. Die Funktion CLO stellt sicher, dass die abgegebene Lichtmenge trotzdem stabil gleich bleibt. Dazu wird der LED-Strom im Laufe der LED-Lebensdauer kontinuierlich erhöht. Über ready2mains können Startwert (in Prozent) und zu erwartende Lebensdauer definiert werden.

Der LED-Treiber passt den LED-Strom anschließend automatisch an.

6.7 Power-up/-down Fading

Die Power-up/-down Fading Funktion bietet die Möglichkeit das Ein- und Ausschalt-Verhalten anzupassen. So lässt sich das Fading während des Einbzw. Ausschaltens über einen Zeitraum von 0,2 bis 16 Sekunden variabel einstellen. Dabei dimmt das Gerät in der eingestellten Zeit von 0 % auf den Power-On Level oder vom aktuell eingestellten Dimm-Level auf 0 %. Dies gilt sowohl für den Betrieb mittels 4remoteBT, wie auch bei Ein- und Ausschalten der Versorgungsspannung.

Ab Werk in kein Fading (=0s) eingestellt.

6.8 Lichtlevel im DC-Betrieb

Der LED-Treiber ist für den Betrieb an DC-Spannung und gepulster DC-Spannung ausgelegt. Für einen zuverlässigen Betrieb ist sicherzustellen, dass der LED-Treiber auch im DC- und Notlichtbetrieb innerhalb des in Kapitel "4.1 Arbeitsfenster" spezifizierten Bereiches betrieben wird.

Lichtlevel im DC-Betrieb: programmierbar 1 – 100 % (EOF_i = 0,13) Programmierung mit utilityAPP.

Im DC-Betrieb kann auch der Dimmbetrieb aktiviert werden.

Der spannungsabhängige Eingangsstrom des Betriebsgerätes inkl. LED-Modul hängt von der angeschlossenen Last ab.

Der spannungsabhängige Leerlaufstrom des Betriebsgerätes (ohne oder mit defektem LED-Modul) ist für:

AC: 22 mA (bei 230 V, 50 Hz)
DC: 6 – 10 mA (bei 275 – 186, 0 Hz)

6.9 Software / Programmierung

Mittels Software können verschiedene Funktionen aktiviert bzw. Parameter konfiguriert werden.

Hierzu ist der ready2mains Programmer oder die utilityAPP notwendig.

7. Sonstiges

7.1 Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 V $_{\text{DC}}$ während 1 Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Nullleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens $2\,\mathrm{M}\Omega$ betragen.

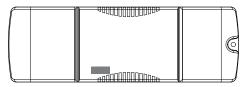
Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit 1500 V $_{\mbox{\scriptsize AC}}$ (oder 1,414 x 1500 V $_{\mbox{\scriptsize DC}}$). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

7.2 Bedingungen für Lagerung und Betrieb

Luftfeuchtigkeit: 5 % bis max. 85 %,

nicht kondensierend (max. 56 Tage/Jahr bei 85 %)

Lagertemperatur: -40 °C bis max. +80 °C


Bevor die Geräte in Betrieb genommen werden, müssen sie sich wieder innerhalb des spezifizierten Temperaturbereiches (ta) befinden.

7.3 Platzierung

basicDIM Wireless verfügt über eine integrierte Antenne für eine einfache Integration. Um die Reichweite in jede Richtung zu optimieren, sollten bei der Montage des Geräts einige Designrichtlinien beachtet werden. Die Antenne befindet sich an der Ecke des Gehäuses. Sie befindet sich auf der Oberseite der Leiterplatte.

Wird das Gerät an einer Metallplatte montiert (z.B. am Rahmen einer Leuchte), kann dadurch das Funksignal nachhaltig gestört werden. In diesem Fall ist unter Umständen ein Ausschnitt unterhalb der Antenne erforderlich, damit das Funksignal die Konstruktion verlassen kann. Der ausgeschnittene Bereich sollte so groß wie möglich sein. Auch sollte das Gerät so weit wie möglich entfernt von vertikalen Metallstrukturen platziert werden.

■ Antennenposition

Die Reichweite des Funksignals hängt von der Umgebung ab, z.B. Leuchte, Gebäudekonstruktion, Möbel oder Menschen, und muss in der Installation geprüft und abgenommen werden.

7.4 Maximale Anzahl an Schaltzyklen

Alle LED-Treiber werden mit 50.000 Schaltzyklen geprüft. Die tatsächlich erreichbare Anzahl Schaltzyklen liegt signifikant höher.

7.5 Zusätzliche Informationen

Weitere technische Informationen auf $\underline{www.tridonic.com} \rightarrow \mathsf{Technische}$ Daten

Garantiebedingungen auf <u>www.tridonic.com</u> → Services

Lebensdauerangaben sind informativ und stellen keinen Garantieanspruch dar.

Keine Garantie wenn das Gerät geöffnet wurde!